挡风玻璃平视显示器上的行驶车道
2020-01-13

挡风玻璃平视显示器上的行驶车道

本发明涉及挡风玻璃平视显示器上的行驶车道。一种实质上透明的挡风玻璃平视显示器在挡风玻璃的预定区域上包括发光粒子或微结构中的一种,其允许发光显示同时允许透过挡风玻璃的视野。一种在车辆透明的挡风玻璃平视显示器上显示图形图像的方法,该图像描述了车辆相对于行驶车道的通过,该方法包括监测描述车辆运行环境的信息输入。监测这些信息输入包括监测所希望的行驶车道,和监测车辆的当前位置。该方法还包括确定所希望的行驶车道和车辆当前位置的关系,确定描述所希望的行驶车道和车辆当前位置的关系的图形,和在实质上透明的挡风玻璃的平视显示器上显示描述所希望的行驶车道和车辆当前位置的关系的图形。

当摄像机数据可用时,下列测量公式可以被Kalman滤波器使用:

图1显示了根据本发明装配有EVS系统的示例性车辆。车辆100包括EVS系统管理器Iio;车辆传感器系统,包括摄像机系统120和雷达系统125;车辆操作传感器,包括车速传感器130;信息系统,包括GPS装置140和无线通讯系统145;平视显示器(HUD,head_updisplay)150;EVS图形系统155;图形投射系统158;以及乘员眼睛位置感测系统160。所述EVS系统管理器110包括可编程处理器,可编程处理器包括程序来监测各种输入并确定什么信息适合于显示在所述HUD上。EVS系统管理器可以与各个系统和部件直接通讯,或所述EVS系统管理器可以替代地或另外地通过LAN/CAN系统115通讯。EVS系统管理器使用与车辆运行环境相关的信息,这些信息从多个输入获得。摄像机系统120包括摄像机或图像获取装置,它们获取表示车辆的视图的周期的或序列的图像。雷达系统125包括本领域公知的用电磁辐射来检测车辆附近的其它车辆或对象的装置。多种公知的车载传感器被广泛地用在车辆中以监测车速、发动机转速、车轮滑移、和其它描述车辆运行的参数。示例性的车速传感器130被描述为代表这种描述车辆操作的车载传感器,但本发明旨在包括EVS系统使用的任何这种传感器。GPS装置140和无线通讯系统145是本领域公知的与车外信息源如卫星系统180和蜂窝式通讯塔190进行通讯的装置。GPS装置140可以与3D地图数据库一起使用,3D地图数据库包括由关于车辆当前位置的GPS装置140接收的涉及总体坐标的详细信息。HUD150包括挡风玻璃,挡风玻璃装配有可以显示投射到其上的图像的特征部件,同时保持透明或实质上透明以便车辆的乘员通过挡风玻璃可以清楚地观察车夕卜。应当理解,虽然HUD150包括车辆前方的挡风玻璃,但是车辆内的其它表面也可用于投射,包括侧窗和后窗。此外,前挡风玻璃上的视图可以作为连续的图像在前部车辆“A-柱”上且至所述侧窗上连续。EVS图形引擎(graphicsengine)155包括显示软件或程序,所述显示软件或程序翻译请求从而以描述信息的图形表示的方式显示来自EVS系统管理器110的信息。EVS图形引擎155包括补偿挡风玻璃的弯曲和倾斜表面以及图形所投射到的任何其它表面的程序。EVS图形引擎155控制图形投射系统158,图形投射系统158包括产生激励光从而投射图形表示的激光器或投射装置。乘员眼睛位置感测系统160包括本领域公知的传感器以近似(估计)乘员头部的位置并进一步近似乘员眼睛的方位或注视部位。基于乘员眼睛位置感测系统160的输出以及与车辆周围环境相关的跟踪位置信息的输入数据,EVS系统管理器110可以准确地将图形图像配准至HUD,从而乘员可以通过挡风玻璃看见覆盖有视觉图像的图像。

本领域公知的头和眼睛传感装置在此不再详述。为了本发明的目的,基于摄像机的装置与图像识别软件结合使用以基于图像识别程序估计车辆内的三维头部位置(能与车辆坐标系协调)和操作者目光的方向。关于车辆坐标系的对象的定位可通过传感器输入来确定,例如根据上述的跟踪方法。基于与车辆坐标系协调的操作者头部位置和与车辆坐标系协调的对象轨迹,被跟踪对象和操作者眼睛之间的估计出的交叉点可以在挡风玻璃上确定,从而实现根据本发明的通过挡风玻璃的与相关特征的信息配准。具有车道标志投射的类似方法以及在此处描述的其它方法是可能的,其允许信息在HUD上的准确配准。类似的,头部位置与操作者凝视方向的估计的结合允许根据所述方法的信息的投射能保证操作者尽可能看到关键信息。类似的方法可以由车辆中前座乘客或后座乘客来实现,允许在各个表面上对于车辆乘员的配准投射。

亮度不一致是一种潜在的不规则性,其可以导致在挡风玻璃上投射变得困难。另一种潜在的不规则性包括由几何扭曲产生的图形图像的扭曲,原因在于在大投射宽视角系统构造中的不平坦的显示表面、立体的和光学象差。一种双阶段扭曲修正方案被公开来通过用非均勻有理b样条(non-uniform-rationalb_spline,NURB)参数曲线/碎片来模型化扫面曲线和投射屏以修正激光矢量投射显示的几何扭曲。在第一阶段中,对象空间中的理想的NURB将被转换到由观察点限定的观察空间。这种透视随后因为它们的仿射和透视的不变性而被映射到虚拟显示平面。最后,如果需要,其被映射到具有参数化空间映射的非平坦显示器表面。在第二阶段中,路径被转换到由投射器的位置限定的投射空间,随后路径被映射到投射平面。非线性扭曲通过校准方法被修正。

上述EVS包括眼睛感测和头部感测装置,所述装置允许估计眼睛位置、允许在HUD上配准图像以使得所述图像与操作者的视野相对应。然而,应当理解,头部和眼晴位置的估计可以通过多种方法获得。例如,在类似于调节后视镜的过程中,操作者可以在进入车辆时使用校准程序来将图形和检测到的对象对准。在另一实施方式中,在车辆中的纵向座椅位置可以用来估计驾驶员头部的位置。在另一实施方式中,后视镜的手动调节可以用来估计操作者眼睛的位置。应当理解,方法的组合也可以用来更加精确地估计操作者的头部位置,这些方法例如是座椅位置和镜子调节角。在HUD上完成图形的精确配准的多种方法是可以预期的,且本发明不限于这里描述的具体实施方式。

关于车道几何参数和相对于车道的车辆位置和方位的实时且可靠的信息在多种应用或车辆控制方案中可以是有用的。例如,这种信息可以被用于在车道保持,前灯调节,改善的导航辅助,和瞌睡警报的应用中辅助操作者。然而,本领域技术人员应当理解,多种应用可以利用这些信息,本发明不限于这里描述的具体实施方式。

图7是根据本发明的不同发光材料的激励和发射关系的示例图。示例性区域48显示了第一种发光材料的激励/发射截面。示例性区域46显示了第二种发光材料的激励/发射截面。示例性区域50显示了第三种发光材料的激励/发射截面。然而,应当理解,多种示例性激励/发射截面是可以预期的,包括:其中能产生多个发射范围的单激励频率范围的实施方式,或相反地,其中多种激励频率范围可以交替地产生相同或重叠发射范围的实施方式。

示例性EVS包括:宽视场;全挡风玻璃(HUD);实质上透明的屏幕,包括在其上显示投射的图形图像的功能;HUD图像引擎,包括在挡风玻璃上能投射图像的一个或多个激光器;输入源,其获得与车辆运行环境相关的数据;以及,包括程序的EVS系统管理器,所述程序监测来自输入装置的输入、处理所述输入并确定与运行环境相关的关键信息、并建立需要由HUD图像引擎建立图形图像的请求。然而,应当理解,该示例性EVS只是EVS能采取的多种构造方式中的一种。例如,视觉或摄像机系统对接下来将描述的各种EVS应用都是有用的。然而,应当理解,示例性EVS系统可以不使用视觉系统来运行,例如,从仅仅GPS装置、3D地图数据库和车载传感器来提供有用的信息。在替代选择中,应当理解示例性EVS系统可以不访问GPS装置或无线网络而运行,取而代之的是只使用来自视觉系统和雷达系统的输入。这里公开的系统和方法的多种不同的配置是可能的,本发明并不限于这里描述的示例性实施例。

图16示意性地显示了根据本发明传感器输入被融合成在碰撞准备系统中可用的对象轨迹的示例性系统。与车辆周围环境中的对象相关的输入被数据融合模块监测。数据融合模块分析、过滤、或相对于各种输入的可靠性按优先顺序区分所述输入,被区分优先顺序或加权的输入被加起来以产生针对车辆前方的对象的轨迹估计。这些对象轨迹随后被输入到碰撞威胁评估模块,其中每个轨迹都用来评估碰撞的可能性。这种对于碰撞的可能性可以被评价,例如,相对于碰撞可能性的阈值来评价,并且如果碰撞被确定为可能,则碰撞对策可被启动。

挡风玻璃平视显示器上的行驶车道

本发明涉及挡风玻璃平视显示器上的行驶车道。一种实质上透明的挡风玻璃平视显示器在挡风玻璃的预定区域上包括发光粒子或微结构中的一种,其允许发光显示同时允许透过挡风玻璃的视野。一种在车辆透明的挡风玻璃平视显示器上显示图形图像的方法,该图像描述了车辆相对于行驶车道的通过,该方法包括监测描述车辆运行环境的信息输入。监测这些信息输入包括监测所希望的行驶车道,和监测车辆的当前位置。该方法还包括确定所希望的行驶车道和车辆当前位置的关系,确定描述所希望的行驶车道和车辆当前位置的关系的图形,和在实质上透明的挡风玻璃的平视显示器上显示描述所希望的行驶车道和车辆当前位置的关系的图形。

如图16所示,融合模块适用于整合来自各个传感装置的输入并产生车辆前方对象的融合轨迹。在图16中产生的融合轨迹包括相对于车辆的对象的相对位置和轨线的数据估计。该基于雷达和其它测距传感器输入的数据估计是有用的,但包括使用来产生所述轨迹的传感器装置的不准确性和不精确性。如上所述,不同的传感器输入可以被综合利用以提高所产生轨迹中涉及的所述估计的准确性。特别的,具有侵入性后果的应用,例如自动制动和潜在的气囊展开,需要在即将来临的碰撞的预测中具有高的准确性,因为错误的确定会对车辆驾驶性能具有较高的影响,错误的指示会导致不起作用的安全系统。

附图说明

亮度不一致是一种潜在的不规则性,其可以导致在挡风玻璃上投射变得困难。另一种潜在的不规则性包括由几何扭曲产生的图形图像的扭曲,原因在于在大投射宽视角系统构造中的不平坦的显示表面、立体的和光学象差。一种双阶段扭曲修正方案被公开来通过用非均勻有理b样条(non-uniform-rationalb_spline,NURB)参数曲线/碎片来模型化扫面曲线和投射屏以修正激光矢量投射显示的几何扭曲。在第一阶段中,对象空间中的理想的NURB将被转换到由观察点限定的观察空间。这种透视随后因为它们的仿射和透视的不变性而被映射到虚拟显示平面。最后,如果需要,其被映射到具有参数化空间映射的非平坦显示器表面。在第二阶段中,路径被转换到由投射器的位置限定的投射空间,随后路径被映射到投射平面。非线性扭曲通过校准方法被修正。

公开了可由EVS系统管理器辨别的关键信息的其它实施方式。在一个示例性的应用中,主车和其它车辆之间建议的跟随距离可以与测量距离相比较,而且任何低于最小建议距离的距离可以被识别为作为显示的关键信息。在另一实例中,其中车辆被用来训练新的操作者,显示给乘客/和训练者的图形可以用来改善对新操作者动作的审核。在另一实例中,半自动控制或ACC状态下的车辆操作可以显示将当前距离与其它车辆通讯的关键信息或向操作者表述控制系统动作的其它信息,从而操作者可以迅速确定是否需要操作者手动干涉。在另一实例中,车辆与车辆之间的通讯可以即时地用来管理两个使用ACC车辆之间的并入操作(mergingmaneuver)。HUD上的图形可以用来交流每个驾驶员的意图以执行并入操作,以便告知每个驾驶员交流的意图从而避免不期望的车辆运动的改变和避免可能碰撞的感觉。在类似应用中,在使用半自动行驶的车辆中,其中通过与自动转向机构相联的车道保持系统来利用自动车辆侧向控制,HUD上的图形可以用来提前通知操作者将要发生车道改变或其它动作,从而操作者不会对半自动控制随后采取的措施感到惊讶。

图34显示了通过变道提高安全性的示例性图形显示;

图7是根据本发明的不同发光材料的激励和发射关系的示例图。示例性区域48显示了第一种发光材料的激励/发射截面。示例性区域46显示了第二种发光材料的激励/发射截面。示例性区域50显示了第三种发光材料的激励/发射截面。然而,应当理解,多种示例性激励/发射截面是可以预期的,包括:其中能产生多个发射范围的单激励频率范围的实施方式,或相反地,其中多种激励频率范围可以交替地产生相同或重叠发射范围的实施方式。

示例性EVS包括:宽视场;全挡风玻璃(HUD);实质上透明的屏幕,包括在其上显示投射的图形图像的功能;HUD图像引擎,包括在挡风玻璃上能投射图像的一个或多个激光器;输入源,其获得与车辆运行环境相关的数据;以及,包括程序的EVS系统管理器,所述程序监测来自输入装置的输入、处理所述输入并确定与运行环境相关的关键信息、并建立需要由HUD图像引擎建立图形图像的请求。然而,应当理解,该示例性EVS只是EVS能采取的多种构造方式中的一种。例如,视觉或摄像机系统对接下来将描述的各种EVS应用都是有用的。然而,应当理解,示例性EVS系统可以不使用视觉系统来运行,例如,从仅仅GPS装置、3D地图数据库和车载传感器来提供有用的信息。在替代选择中,应当理解示例性EVS系统可以不访问GPS装置或无线网络而运行,取而代之的是只使用来自视觉系统和雷达系统的输入。这里公开的系统和方法的多种不同的配置是可能的,本发明并不限于这里描述的示例性实施例。

评估即将发生的变道状态的图形可以是在挡风玻璃上的通用图形,其包括图像、文本或任何其他对于警告或通知操作者有用的指示。在替代方案中,图形可以基于所监测的操作者眼睛位置被配准到车道边界,例如,该车道边界由系统检测的车道标记所定义。这种配准的图形可以说明被观测的边界,并且采用例如改变颜色或增加图像强度的指示对于提醒或通知操作者将要发生的变道是有用的。例如,绿色通常被认为是表示接受的颜色,而红色通常被认为是表示警报的颜色。一个示例性的系统可以将被模拟的车道标记投影为绿色,其表示所希望的车道改变是可接受的,或系统可以将模拟的车道标记投影为红色,例如,用“X”表示,其表示由于检测到的在相邻行驶车道上的交通使得所希望的车道改变是不可行的。此外,文本信息可以被显示以进一步通知驾驶员当前的情况。类似地,目光位置可以被确定并且与出现的警报的位置相比较。如果操作者的目光与出现的警报相隔太远,此处描述的方法可以用于吸引操作者的视线注意。在这种方式下,在公开的挡风玻璃上的投影可以用于评估车道改变并且警告或通知操作者。

亮度不一致是一种潜在的不规则性,其可以导致在挡风玻璃上投射变得困难。另一种潜在的不规则性包括由几何扭曲产生的图形图像的扭曲,原因在于在大投射宽视角系统构造中的不平坦的显示表面、立体的和光学象差。一种双阶段扭曲修正方案被公开来通过用非均勻有理b样条(non-uniform-rationalb_spline,NURB)参数曲线/碎片来模型化扫面曲线和投射屏以修正激光矢量投射显示的几何扭曲。在第一阶段中,对象空间中的理想的NURB将被转换到由观察点限定的观察空间。这种透视随后因为它们的仿射和透视的不变性而被映射到虚拟显示平面。最后,如果需要,其被映射到具有参数化空间映射的非平坦显示器表面。在第二阶段中,路径被转换到由投射器的位置限定的投射空间,随后路径被映射到投射平面。非线性扭曲通过校准方法被修正。

图9显示了根据本发明类似于图8的,布置在实质上透明或半透明基板的表面上的微结构的模式的示例图;